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INTRODUCTION METHODOLOGY
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Molecular Machine
d - I . Table 1: Node features used to define molecular graphs. Table 2: Edge features used to define molecular graphs.
ESCr pto IS earnin g Node feature Description Dimensions Edge feature Description Dimensions
Ty‘pﬂ * Ty‘pﬂ of atom (C. O, Cl, N, F, Br, S, Other) b Type * Type of bond (single, double, triple, aromatic) 4
Ring Whether the atom is part of a ring | Conjugated Whether the bond is conjugated 1
Aromaticity Whether the atom is part of an aromatic ring 1 Ring Whether the bond is in a ring I
Hybridizatjun # Hybridizatjﬂn of the atom (Sp, sz, Sp?', 5]3'3 d, Sp?‘dz} 5 * Implemented using one-hot-encoding (vector of binary values for each unique integer value).
Bonds * Number of bonds to the atom 6
* Implemented using one-hot-encoding (vector of binary values for each unique integer value).
Graph Neural
Network Graph Neural Network architecture

. m,(fi?vj = vj(l_l) - MLP,(e;) with k involving nodes i and j.
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BACKGROUND

« v = GRU (O(l)vi(l_l) + a,(,li))

 MLP, with single hidden layer with 128 neurons and RelLU activation.

Graphs [%6 € an}

« 2 Graph-convolutional layers with size 21 with Set2Set pooling layer with 3 processing steps.

« 3-hidden layers in final MLP with 64, 32 and 16 neurons.

« Graph: G = (V,E)
* Node:V := {Ui}i=1:N" [rk:l = (1'2)J

-~ [ek=4 . ]RneJ Training, validation and testing

* Bdge : E = {(ex i Siddi=1:ne [Sk=1 =(21) . Trained with Adam (300 epochs, batch size of 30) using MSE as loss function and MAE as

decision metric.

* 80% training (out of which 20% was used for validation) and 20% test.

Graph Neural Networks [2] « Ensemble learning using 10 models constructed with differend random seeds.

« Dropout of 50% used in convolutional layers and final MLP.

For each convolutional layer :

+ Message passing m,(,li?vj = ¢y (vi(l_l),vj(l_l), e, ) with k involving nodes i and j RESULTS AND DISCUSSION

- Message aggregation: a,(]? = ¢4 ({mwg?v, v EN (”i)})

. . RO ( (1-1) (l)) . Table 3: Comparison of models for predicting BCE
Features updating  :v;” = ¢y (v, 7, ay, Comparable performance to the — —— Veldarionset | Traming ot
T best QSAR model reported by R> MAE SDEP K> MAE SDEP R’ MAE SDEP
.~~~ Message Passing scheme . -
; B 2h | GNN 082 049 034 083 044 032 082 044 035
—— 1. ao etal. ™. Zhao 079 045 059 079 - 066 083 - 0.56
f I : S : — _
: I/ \Ig\fx] | i ° 1022 deSCl'lptOl'S [4] VS 8 Bold numbers indicate preferred value.
e structural parameters. 5
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Pooling for vectorial molecular representation 0 e g..'. [M?E: 0.49 . SDEP: 0,34]
R<:0.82

The final-updated graph is pass through a permutation invariant pooling operation such as sum, 0 1 2 3 4 5

max, mean or Set2Set 3], Experimental logBCF
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